

PBK-003-001105

Seat No.

B. Sc. (Sem. I) Examination

November / December - 2018

M - 101 : Geometry & Calculus

Faculty Code: 003

Subject Code: 001105

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions:

- (1) All questions are compulsory.
- (2) Right hand side digit indicates the mark.
- 1 All questions are compulsory

20

- (1) The Cartesian coordinate of polar point $(1, \frac{\pi}{2})$ is _____.
- (2) Find the polar form of the equation $x^2 + y^2 = 4$.
- (3) Write the equation of a sphere having center (a, b, c) and radius r.
- (4) Find the center and radius of the sphere $x^2 + y^2 + z^2 2x 2y 2z 1 = 0$.
- (5) If $y = \frac{1}{x}$, then find $\frac{d^n y}{d x^n}$.
- (6) $\frac{\mathrm{d}^8 x^7}{\mathrm{d} x^8} = \underline{\hspace{1cm}}$
- (7) The set N is lower bounded. [True/False]
- (8) The function $f(x) = 6(x-2)^{\frac{1}{2}}$, x < 2 is _____. (Increasing/Decreasing)
- (9) Find $\lim_{x \to a} \frac{\log(x-a)}{\log(e^x e^a)}$.
- (10) Write the indeterminate form of $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$.
- (11) Find the integrating factor of the differential equation $\frac{dy}{dx} = x + y$.
- (12) Write Clairaut's differential equation.
- (13) If m_1, m_2 are distinct real roots and m_3, m_4 are distinct complex roots of auxiliary equation of homogeneous differential equation, then write the solution.

$$(14) \ \frac{1}{D^3} 3x^3 = \underline{\qquad}.$$

$$(15) (1+D)^{-1} = \underline{\qquad}.$$

- (16) Find $\int_{0}^{\frac{\pi}{2}} \sin^{10} x dx$.
- (17) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^4 x dx.$

(18)
$$\frac{1}{f(D^2)}\cos ax =$$
______, provided $f(-a^2) \neq 0$.

- (19) Define first order first degree homogeneous differential equation.
- (20) State the alternative form of Lagrange's mean value theorem.
- 2 (A) Attempt any Three out of Six:

6

- (1) Convert the Cartesian equation $x^3 = y^2(2a x)$ into polar equation.
- (2) Find the sphere for which A(2, -3, 4) and B(-2, 3, -4) are the extremities of diameter.
- (3) Derive the nth derivative of $\sin(ax + b)$.
- (4) Prove that for any quadratic function $px^2 + qx + r$, the value of θ in Lagrange's theorem is always $\frac{1}{2}$ whar ever values of p, q, r, a, h may be.
- (5) Show that Maclaurin's series expansion of e^x is $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$ for all $x\in\mathbb{R}$.

(6) If
$$f(x) = \frac{x \cos x - \log(x+1)}{x^2}$$
, then $\lim_{x \to 0} f(x) = \frac{1}{2}$.

(B) Attempt any Three out of Six:

C

- (1) Find the equation of the circle in polar coordinate system whose tangent is the initial line.
- (2) Evaluate $\lim_{x \to \frac{\pi}{2}} \left(\cot^2 x \frac{1}{x^2} \right)$.
- (3) Find Approximate value of $\log_{10} 73.55$, correct up to six decimal places, where $\log_{10} 73 = 1.863323$, $\log_{10} e = 0.43429$.
- (4) Derive the condition for the equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0 \text{ to be a sphere.}$
- (5) Verify Lagrange's mean value theorem for the function f(x) = (x-1)(x-2)(x-3) in [1,4].
- (6) If $y = e^{ax} \sin(bx + c)$, then find $\frac{d^n y}{d x^n}$.

	(C	Attem	pt any	Two	out	of	Five
--	----	-------	--------	-----	-----	----	------

- (1) Prove that the plane x + 2y z = 4 cuts the sphere $x^2 + y^2 + z^2 - x + z - 2 = 0$ in a circle of radius unity and find the equation sphere which has this circle for one of the great circles.
- (2) State and prove Libnitz's theorem.
- (3) State and prove Roll's mean value theorem.

(4) Show the
$$e^{m\sin^{-1}x} = 1 + mx + \frac{m^2}{2}x^2 + \frac{m(m^2+1)}{3!}x^3 + \frac{m^2(m^2+2^2)}{4!}x^4 + \cdots$$

(5) Find the relation between spherical coordinate & Cartesian coordinate. Also get the relation between cylindrical coordinate & cartesian coordinate.

10

(1) Solve
$$\frac{dy}{dx} = e^{-2y} (e^{3x} + x^2)$$
.
(2) Solve $\frac{dy}{dx} + x \sin(2y) = x^3 \cos^2 y$.
(3) Solve $y'' - 4y' + 13y = 0$.

(2) Solve
$$\frac{\mathrm{d}y}{\mathrm{d}x} + x\sin(2y) = x^3\cos^2 y.$$

(3) Solve
$$y''' - 4y' + 13y = 0$$
.

(4) Solve
$$\frac{d^2y}{dx^2} - 7\frac{dy}{dx} + 12y = e^{5x}.$$
(5) Find the value of
$$\int_0^{\pi} \sin^6 x \cdot \cos^4 x dx.$$

(5) Find the value of
$$\int_0^{\pi} \sin^6 x \cdot \cos^4 x dx$$
.

(6) Find the general solution of
$$(y - px)(p - 1) = 0$$
.

(1) Solve
$$\frac{dy}{dx} = (4x + y + 1)^2$$
, if $y(0) = 1$.
(2) Solve $y - 2px = \tan^{-1}(xp^2)$.

(2) Solve
$$y - 2px = \tan^{-1}(xp^2)$$
.

(3) Solve
$$x^2(y - px) = yp^2$$
.

(4) Find particular integral of
$$(D^2 + 9)y = e^{2x} + 2x$$
.

(5) Find
$$\int \cos^6 x dx$$
.

(6) Prove that
$$\frac{1}{D-a}X = e^{ax} \int Xe^{-ax} dx$$
.

(1) Solve
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \sin(2x)$$
.
(2) Find the solution of first order linear differential

(3) Find the reduction formula for $\int \sin^m x \cdot \cos^n x dx$, where $m, n \in \mathbb{N}$.

(4) Show that
$$\frac{1}{f(D)}e^{ax}V=e^{ax}\frac{1}{f(D+a)V}$$
, where V is a function of x .

(5) State and prove the necessary and sufficient condition for the differential equation

$$M(x,y)dx + N(x,y)dy = 0$$
 to be exact.